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Abstract— This paper derives exact expressions for the level
crossing rate (LCR) and average fade duration (AFD) of a
two-branch selection, equal gain and maximal-ratio combining
systems in a Weibull fading environment. The expressions apply
to unbalanced, non-identical, correlated diversity channels and
have been validated by specializing the general results to some
particular cases whose solutions are known. In addition, new
closed-form solutions for some special cases are obtained.

Index Terms— Average fade duration, equal-gain combining,
maximal-ratio combining, level crossing rate, selection combin-
ing, Weibull fading environment.

I. INTRODUCTION

Diversity-combining techniques constitute an effective
means to combat the deleterious effects of multipath fading
on the performance of wireless communication systems. This
performance can be evaluated by several means including the
LCR and AFD. LCR and AFD are important second-order
statistical quantities, which have been extensively explored in
the literature . In [1], LCR and AFD expressions of selection-
combining (SC), maximal-ratio combining (MRC), and equal
gain combining (EGC) for balanced, dual-branch diversity
in correlated Rayleigh channels were presented. The case of
unbalanced, non-identical, and correlated Hoyt channels was
shown in [2]. Some results involving the independent but non-
identical Weibull channels for SC diversity have been pre-
sented in [3]. This paper derives exact expressions for the LCR
and AFD of a two-branch selection, equal gain and maximal-
ratio combining systems in a Weibull fading environment.
The expressions apply to unbalanced, non-identical, correlated
diversity channels and have been validated by specializing
the general results to some particular cases whose solutions
are known. In addition, new closed-form solutions for some
special cases are obtained.

This paper is organized as follows. Section II establishes
the model of Weibull fading channels. Section III derives the
Joint Bidimensional Envelope-Phase Weibull density. Some
key statistics involving the branch envelopes and their time
derivatives are derived in section IV. Relying upon these
statistics, the general exact LCR and AFD expressions are also
presented. Section V derives the conditional statistics of the
received complex signal at the ith branch. Section VI computes
the means and the variances for each diversity system. Section
VII shows some numerical plots, and finally Section VIII
draws some conclusions.

II. PRELIMINARIES

The Weibull distribution is an empirical distribution, which
was first proposed aiming at applications in reliability engi-
neering. It has also found use in wireless communications to
model the fading envelope. Due to the lack of a theoretical
basis [4], the application of the Weibull distribution in wireless
communications has been limited to the first order statistics of
the fading signal. In [5], a very simple physical model for the
Weibull distribution was proposed. In essence, in the proposed
model the received signal Zi at the ith branch (i = 1, 2) can
be represented in a complex form as

Zi = R
αi
2

i exp(jΘi) = Xi + jYi (1)

where the in-phase component Xi and the quadrature com-
ponent Yi are independent zero-mean Gaussian variates with
identical variances σ2

i , and αi stands for the fading parameter.
Consider that the random phase θi = arctan−1( Yi

Xi
) is uni-

formly distributed in [0,2π). The probability density function
(PDF) pRi

(·) of the envelope Ri is given by

pRi
(ri) =

αir
αi−1
i

Ωi

exp

(

−rαi

i

Ωi

)

(2)

where Ωi = E (Rαi

i ). As the value of fading parameter αi in-
creases, the severity of the fading decreases, while for the espe-
cial case of αi = 2, (2) reduces to well-known Rayleigh PDF.
The corresponding cumulative distribution function (CDF) of
Ri is given by

PRi
(ri) = 1 − exp

(

−rαi

i

Ωi

)

(3)

From (1), it can be seen that the resulting envelope is given
as the modulus of the multipath Rayleigh component Rli to
the power 2/αi > 0. Hence, the relation between Ri and Rli

can be expressed as

Ri = R
2

αi

li (4)

III. THE JOINT BIDIMENSIONAL ENVELOPE-PHASE

WEIBULL DENSITY

The joint bidimensional envelope-phase Weibull density
(JBEPWD) can be obtained by capitalizing on some results
already available in the literature for the Rayleigh distribution.
The joint bidimensional envelope-phase Rayleigh distribution
pRl1,Rl2,Θ1,Θ2

(rl1, rl2, θ1, θ2) is given by [6, Eq. 7.51]. From
(4), follows that Rα1

1 = R2
l1 and Rα2

2 = R2
l2, hence the



JBEPWD can be found as
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where | · | denotes the determinant operator, |J | is the Jacobian

of the transformation given by |J | = 4
α1α2

r
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1 r
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2

2 , θ12

is defined as θ12 = θ2 − θ1, and Λ is the covariance matrix
given by
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The correlation coefficients µ1, µ2 are defined as
µ1 = E(X1X2)−E(X1)E(X2)√

var(X1)var(X2)
= E(Y1Y2)−E(Y1)E(Y2)√

var(Y1)var(Y2)
and

µ2 = −E(X1Y2)−E(X1)E(Y2)√
var(X1)var(Y2)

= E(Y1X2)−E(Y1)E(X2)√
var(Y1)var(X2)

. The or-

thogonality between phase and quadrature components implies
E (X1Y1) = E (X2Y2) = 0 (E(·) denotes the expectation
operator). After some algebraic manipulations, the JBEPWD
can be found as
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where ρ2 = µ2
1 + µ2

2.

IV. AVERAGE LCR AND AFD

The average LCR is defined as the average number of times
per unit duration that the envelope of a fading channel crosses
a given value in the negative direction and it can be evaluated
as

NR(r) =

∫ ∞

0

ṙpR,Ṙ(r, ṙ)dṙ (8)

where pR,Ṙ(·, ·) is the joint PDF of R and its time derivative
Ṙ. The AFD corresponds to the average length of time the
envelope remains under a certain value once it crosses it in
the negative direction and can be obtained as

TR(r) =
PR(r)

nR(r)
(9)

where PR(·) is the CDF of the envelope R. In the following,
(8) and (9) shall be calculated for the dual-branch, correlated,
non-identical, unbalanced Weibull fading environment using
the SC, EGC and MRC.

A. Diversity Systems

The output envelope and its output time derivative in the
SC, EGC and MRC combining system are given, respectively,
by

R =






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2
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(10a)
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In [7] it has been shown that Ṙi given Ri and Θi is a
zero-mean Gaussian variate. On the other hand, when the
branches are correlated the mean of the conditional Gaussian
distribution of Ṙ given Ri’s and Θi’s is not zero, although
Ṙi given Ri and Θi still is a zero-mean Gaussian variate.
From the above, and using the properties of the conditional
probability, the following can be written

pṘ,R1,R2,Θ1,Θ2
(ṙ, r1, r2, θ1, θ2) =

pṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)

×pR1,R2,Θ1,Θ2
(r1, r2, θ1, θ2) (11)

The expression in (11) is used since
pR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2) is given by (7) and the conditional
joint distribution pṘ|R1,R2,Θ1,Θ2

(ṙ|r1, r2, θ1, θ2) is Gaussian
with mean mṘ(r1, r2, θ1, θ2) and variance σ2

Ṙ
(r1, r2, θ1, θ2),

hence

ϑ(r1, r2) ,
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2

(

1 + erf

(
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2σṘ(r1, r2, θ1, θ2)

))

(12)

where erf(·) is the error function. To alleviate the notation,
we denote mṘ(r1, r2, θ1, θ2) and σ2

Ṙ
(r1, r2, θ1, θ2) by mṘ

and σ2
Ṙ

, respectively. The trick part of the problem is the
determination of mṘ and σ2

Ṙ
for each combining scheme.

For the moment, assume that these quantities are known. The
general formula to the LCR for the SC, MRC, and EGC is
given by [2, Eq. 10]. Using this reference and the equation



(12), the LCR can be obtained as
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Ṙi
√

2π
e

−

m2

Ṙi
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Ṙi

2 � 1 + erf � m
Ṙi
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The AFD follows directly from (9), (13) and (14).

From (10), the conditional means and variances for each
combining scheme can be obtained as

1) Selection Combining:

• If R1 ≥ R2

mṘ = mṘ1
(16)

σ2
Ṙ

= σ2
Ṙ1

(17)

• If R1 < R2

mṘ = mṘ2
(18)

σ2
Ṙ

= σ2
Ṙ2

(19)

2) Equal-Gain Combining:
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2
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Ṙ
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Ṙ2
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where σṘ1,Ṙ2
stands for the covariance between Ṙ1 and Ṙ2

given Z.

3) Maximal-Ratio Combining:

mṘ =
r1 mṘ1

+ r2 mṘ2
√

r2
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V. CONDITIONAL STATISTICS OF Żi

The aim of this section and section VI is to find the mean
mṘi

, the variance σ2
Ṙi

, and the covariance σṘi,Ṙj
of the

conditional Gaussian density pṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)

for each combining technique. Before obtaining these
statistics, let us derive the conditional statistics of Żi which is
a crucial step for solving the problem addressed here.

Let Ż = [Ż1Ż2] and Z = [Z1Z2] column matrices of Żi =
˙Zi(t) and Zi = Zi(t), mutually correlated zero-mean Gaussian

processes. The complex covariance matrix, Φ(4×4), between
them is defined as [1]

Φ =
1

2
E

[

(

Ż

Z

)∗(
Ż

Z

)T
]

,

[

a c

c
H

b

]

(24)

where (·)∗ denotes the conjugate operator, (·)T the transpose
matrix, and (·)H the hermitian matrix. Defining ρij(τ) as
the complex crosscorrelation function between ith and jth
branches, ˙ρij =

dρij(τ)
dτ

∣

∣

∣

τ=0
, ρ̈ij =

d2ρij(τ)
dτ2

∣

∣

∣

τ=0
, ρij ,

ρij(0), the matrices a, b and c can be expressed as

a =
1

2

[

−ρ̈11Ω1 −ρ̈12

√
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1

2
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ρ∗12
√
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]

(26)

c =
1

2
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√
Ω1Ω2

ρ̇∗12
√

Ω1Ω2 0

]

(27)

Note that the diagonal elements in the matrix c are null,
because for a stationary process the correlation between the
process and its time derivative is always null at τ = 0
( ˙ρ12 = 0) [9].

Applying the matrix theory described on [10, pp. 495-496],
the conditional density of Ż given Z is Gaussian distributed
with mean matrix M and covariance matrix ∆ given by

M =

[

E(Ż1|Z)

E(Ż2|Z)

]

= (cb−1)∗ Z (28)

∆ =

[

Var(Ż1|Z) Cov(Ż1, Ż2|Z)

Cov(Ż1, Ż2|Z)∗ Var(Ż2|Z)

]

= a − cb
−1

c
H

(29)
where Var(·) and Cov(·) denote variance and covariance,
respectively.

Substituting (25), (26), (27) into (28) and (29), the
conditional statistics of Żi given Z is derived.

VI. MEANS AND VARIANCES OF Ṙis

This section relates the complex variates Żi’s with the real
variates Ṙi’s. In the previous section, the mean, the variance,
and the covariance of Żi’s given Z have been determined. Now
the mean, the variance, and the covariance of the Ri’s will be



calculated given Z. Using Ṙi = 2
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Using the results from (28) and (29), the following mean,
variance and covariance are obtained
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A. Special Cases

Observe that for the Rayleigh case, αi = 2 (i = 1, 2),
and balanced channels Ω1 = Ω2 = 2σ2, the equations from
(16) to (23) reduce in a exact manner to those of [1, Eqs.26
and 27]. In particular for αi = 2 and unbalanced case, these
expressions presented here generalize the results presented in
[1] for the Rayleigh channels.

VII. NUMERICAL RESULTS

The expressions obtained for the LCR and AFD are general
and can be applied to any type of diversity (space, frequency
or time). In this section, we assume space diversity at the
mobile station in order to apply the expressions above derived.
For incoming multipath waves having equal amplitude and
independent phases, the crosscorrelation functions are given

by [1]

ρ11 (τ) = J0 (2πfmτ) (37)

ρ12 (τ) = J0

(

2π

√

(fmτ)
2

+ (d/λ)
2 − 2 (fmτ)

×
√

d/λ cos (β)
)

(38)

where J0 (·) is the zero-order Bessel function, λ is the carrier
wavelength, fm is the maximum Doppler shift in Hz, d is
the antenna spacing, and β ∈ [0, 2π] is the angle between the
antenna axis and the direction of the vehicle motion in radians.
The corresponding correlation coefficients can be calculated as

ρ11 = 1 (39)

ρ12 = J0 (2πd/λ) (40)

ρ̇12 = 2πfm cos (β) J1 (2πd/λ) (41)

ρ̈12 = (2πfm)
2

{

J1 (2πd/λ)

2πd/λ
cos (2β)

− cos2 (β) J0 (2πd/λ)
}

(42)

ρ̈11 = −2 (πfm)
2 (43)

where J1 (·) is the first-order Bessel function. The parameters
µ1 and µ2 used in JBEPWD were expressed as µ1 = ρ12 and
µ2 = 0 since the angular frequency separation is null [11].

Fig. 1 shows the normalized LCR (left axis), NR/fm, and
AFD (right axis), TRfm, as a function of the envelope, for the
SC, EGC and MRC. The following arbitrary parameters have
been used: d/λ = 0.06, αi = 3, β = 0 and β = π/2. The
branches are considered balanced and identical. The curves
without diversity reception have not been included for the
sake of simplicity, but the use of diversity reception reduces
the LCR, particulary for deep fades. Figs. 2 and 3 show
the normalized LCR and AFD, respectively, as a function of
the parameter d/λ, for the SC, EGC and MRC. It has been
considered an envelope level at r = −20 dB, identical fading
parameters αi = 3, two different antenna angles β = 0 and
β = π/2, and balanced channels. It can be seen in Fig. 2
that as the antenna spacing becomes large, the LCR decreases,
becoming oscillatory and convergent. Fig. 2 also shows that
the MRC has the smaller LCR in both cases of antenna angles.
It can be seen in Fig. 3 that the shape of the AFD curves for
the SC, EGC and MRC are loosely dependent on the antenna
spacing when β = π/2.

VIII. CONCLUSIONS

Exact formulas for level crossing rate and average fade
duration of the dual branch SC, EGC and MRC techniques
in a unbalanced, non-identical, and correlated Weibull fading
environment were presented. Furthermore, this paper provides
the joint Weibull bidimensional envelope-phase distribution.
These formulas have been validated by specializing the general
results to some particular case whose solutions are known.



Fig. 1. LCR and AFD for d/λ = 0.06 for SC, EGC and MRC considering
αi = 3 and identical Weibull-fading channels.

Fig. 2. LCR for r = -20dB for SC, EGC and MRC.

Fig. 3. AFD for r = -20dB for SC, EGC and MRC.
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